Nyt fra tidsskrifterne
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Klik på linket nedenfor, tryk derefter Ctrl + C eller højreklik for at kopiere det.
Søgeord (malaria) valgt. Opdateret for 3 timer siden.
138 emner vises.
Wattanakul, T., Baker, M., Mohrle, J., McWhinney, B., Hoglund, R. M., McCarthy, J. S., Tarning, J.
Antimicrobial Agents And Chemotherapy, 19.01.2021 Tilføjet 20.01.2021 10:47Dihydroartemisinin-piperaquine is a recommended first-line artemisinin combination therapy for falciparum malaria. Piperaquine is also under consideration for other antimalarial combination therapies. The aim of this study was to develop a pharmacokinetic-pharmacodynamic model that could be used to optimize the use of piperaquine in new antimalarial combination therapies. The pharmacokinetic-pharmacodynamic model was developed using data from a previously reported dose-ranging study where 24 healthy volunteers were inoculated 1,800 blood-stage Plasmodium falciparum parasites. All volunteers received a single oral dose of piperaquine (960 mg, 640 mg, or 480 mg) on day 7 or day 8 after parasite inoculation in separate cohorts. Parasite densities were measured by qPCR, and piperaquine levels were measured in plasma samples. We used nonlinear mixed-effect modelling to characterize the pharmacokinetic properties of piperaquine and the parasite dynamics associated with piperaquine exposure. Pharmacokinetics of piperaquine was described by a three-compartment disposition model. A semi-mechanistic parasite dynamics model was developed to explain maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites, as seen in natural clinical infections with falciparum malaria. Piperaquine-associated parasite killing was estimated using a maximum effect (Emax) function. Treatment simulations (i.e. 3-day oral dosing of dihydroartemisinin-piperaquine) indicated that to be able to combat multidrug resistant infections, an ideal additional drug in a new antimalarial triple-combination therapy should have a parasite reduction ratio of ≥102 per life cycle (38.8 h) with a duration of action of ≥ 2 weeks. The semi-mechanistic pharmacokinetic-pharmacodynamic model described here offers the potential to be a valuable tool to assess and optimize current and new antimalarial drug combinations therapies containing piperaquine, and the impact of these therapies on killing multidrug resistant infections.
Læs mere Tjek på PubMedMalaria Journal, 19.01.2021 Tilføjet 20.01.2021 01:33
Abstract Background The World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy. Methods This was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6–59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed. Results Of 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64–83%) in Nanoro, 76% (66–83%) in Gourcy, and 92% (84–96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75–89%) in Gourcy, 89% (81–94%) in Nanoro, and 97% (92–99%) in Niangoloko. No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation. Conclusion The results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso. Trial Registry Pan African Clinical Trial Registry Identifier: PACTR201708002499311. Date of registration: 8/3/2017 https://pactr.samrc.ac.za/Search.aspx
Læs mere Tjek på PubMedMalaria Journal, 19.01.2021 Tilføjet 20.01.2021 01:33
Abstract Background LLINs are susceptible to forming holes within a short time in use, compromising their ability to provide long-term physical protection against insect-borne vectors of disease. Mechanical damage is known to be responsible for the majority of holes, with most being the result of snagging, tearing, hole enlargement, abrasion and seam failure, which can readily occur during normal household use. To enable an assessment of the ability of LLINs to resist such damage prior to distribution, a new suite of testing methods was developed to reflect the main damage mechanisms encountered during normal use of LLINs. Methods Four existing BS EN and ISO standards used by the textile industry were adapted to determine the ability of LLINs to resist the most common mechanisms of real-world damage experienced in the field. The new suite comprised tests for snag strength (BS 15,598:2008), bursting strength (ISO 13938-2:1999), hole enlargement resistance (BS 3423–38:1998), abrasion resistance (ISO 12947-1:1998) and new guidance around the seam construction of LLINs. Fourteen different LLINs were tested using the new suite of tests to evaluate their resistance to damage. Results The resistance to mechanical damage of LLINs is not the same, even when the bursting strength values are comparable. Differences in performance between LLINs are directly related to the fabric design specifications, including the knitted structure and constituent yarns. The differences in performance do not primarily relate to what polymer type the LLIN is made from. LLINs made with a Marquisette knitted structure produced the highest snag strength and lowest hole enlargement values. By contrast, LLINs made with a traverse knitted structure exhibited low snag strength values when compared at the same mesh count. Conclusions Prequalification of LLINs should consider not only insecticidal performance, but also inherent resistance to mechanical damage. This is critical to ensuring LLINs are fit for purpose prior to distribution, and are capable of remaining in good physical condition for longer. The new suite of test methods enables the performance of LLINs to be assessed and specified in advance of distribution and can be used to establish minimum performance standards. Implementation of these testing methods is therefore recommended.
Læs mere Tjek på PubMedKuehn BM.
Journal of the American Medical Association, 19.01.2021 Tilføjet 20.01.2021 01:33Treating children in sub-Saharan Africa’s malaria-endemic areas with a monthly preventive drug regimen during the rainy season reduced children’s deaths from the disease by up to 57%, a study found.
Læs mere Tjek på PubMedMalaria Journal, 18.01.2021 Tilføjet 18.01.2021 16:18
Abstract Background The Cascades region, Burkina Faso, has a high malaria burden despite reported high insecticide-treated mosquito net (ITN) use. Human and vector activities outside the hours when indoor interventions offer direct protection from infectious bites potentially increase exposure risk to bites from malaria-transmitting Anopheles mosquitoes. This work investigated the degree of variation in human behaviour both between individuals and through time (season) to quantify how it impacts exposure to malaria vectors. Methods Patterns in human overnight activity (18:00–06:00) to quantify time spent using an ITN across 7 successive nights in two rural communities, Niakore (N = 24 participants) and Toma (71 participants), were observed in the dry and rainy seasons, between 2017 and 2018. Hourly human landing Anopheles mosquito catches were conducted in Niakore specifically, and Cascades region generally, between 2016 and 2017. Data were statistically combined to estimate seasonal variation in time spent outdoors and Anopheles bites received per person per night (bpppn). Results Substantial variability in exposure to outdoor Anopheles bites was detected within and between communities across seasons. In October, when Anopheles densities are highest, an individual’s risk of Anopheles bites ranged from 2.2 to 52.2 bites per person per night (bpppn) within the same week with variable risk dependent on hours spent indoors. Comparably higher outdoor human activity was observed in April and July but, due to lower Anopheles densities estimated, bpppn were 0.2–4.7 and 0.5–32.0, respectively. Males and people aged over 21 years were predicted to receive more bites in both sentinel villages. Conclusion This work presents one of the first clear descriptions of the degree of heterogeneity in time spent outdoors between people and across the year. Appreciation of sociodemographic, cultural and entomological activities will help refine approaches to vector control.
Læs mere Tjek på PubMedLeonardo Suveges Moreira Chaves, Eduardo Sterlino Bergo, Jan E. Conn, Gabriel Zorello Laporta, Paula Ribeiro Prist, Maria Anice Mureb Sallum
PLoS One Infectious Diseases, 14.01.2021 Tilføjet 14.01.2021 20:54by Leonardo Suveges Moreira Chaves, Eduardo Sterlino Bergo, Jan E. Conn, Gabriel Zorello Laporta, Paula Ribeiro Prist, Maria Anice Mureb Sallum Inter-relationships among mosquito vectors, Plasmodium parasites, human ecology, and biotic and abiotic factors, drive malaria risk. Specifically, rural landscapes shaped by human activities have a great potential to increase the abundance of malaria vectors, putting many vulnerable people at risk. Understanding at which point the abundance of vectors increases in the landscape can help to design policies and interventions for effective and sustainable control. Using a dataset of adult female mosquitoes collected at 79 sites in malaria endemic areas in the Brazilian Amazon, this study aimed to (1) verify the association among forest cover percentage (PLAND), forest edge density (ED), and variation in mosquito diversity; and to (2) test the hypothesis of an association between landscape structure (i.e., PLAND and ED) and Nyssorhynchus darlingi (Root) dominance. Mosquito collections were performed employing human landing catch (HLC) (peridomestic habitat) and Shannon trap combined with HLC (forest fringe habitat). Nyssorhynchus darlingi abundance was used as the response variable in a generalized linear mixed model, and the Shannon diversity index (H’) of the Culicidae community, PLAND, and the distance house-water drainage were used as predictors. Three ED categories were also used as random effects. A path analysis was used to understand comparative strengths of direct and indirect relationships among Amazon vegetation classes, Culicidae community, and Ny. darlingi abundance. Our results demonstrate that Ny. darlingi is negatively affected by H´ and PLAND of peridomestic habitat, and that increasing these variables (one-unit value at β0 = 768) leads to a decrease of 226 (P < 0.001) and 533 (P = 0.003) individuals, respectively. At the forest fringe, a similar result was found for H’ (β1 = -218; P < 0.001) and PLAND (β1 = -337; P = 0.04). Anthropogenic changes in the Amazon vegetation classes decreased mosquito biodiversity, leading to increased Ny. darlingi abundance. Changes in landscape structure, specifically decreases in PLAND and increases in ED, led to Ny. darlingi becoming the dominant species, increasing malaria risk. Ecological mechanisms involving changes in landscape and mosquito species composition can help to understand changes in the epidemiology of malaria.
Læs mere Tjek på PubMedMalaria Journal, 14.01.2021 Tilføjet 14.01.2021 20:54
Abstract Background In the absence of a method to culture Plasmodium vivax, the only way to source parasites is ex vivo. This hampers many aspects of P. vivax research. This study aimed to assess the safety of apheresis, a method for selective removal of specific components of blood as a means of extracting and concentrating P. vivax parasites. Methods An iterative approach was employed across four non-immune healthy human subjects in single subject cohorts. All four subjects were inoculated with ~ 564 blood stage P. vivax (HMP013-Pv) and subjected to apheresis 10 to 11 days later. Blood samples collected during apheresis (haematocrit layers 0.5% to 11%) were tested for the presence and concentration of P. vivax by microscopy, flow cytometry, 18S rDNA qPCR for total parasites, and pvs25 qRT-PCR for female gametocyte transcripts. Safety was determined by monitoring adverse events. Malaria transmission to mosquitoes was assessed by membrane feeding assays. Results There were no serious adverse events and no significant safety concerns. Apheresis concentrated asexual parasites by up to 4.9-fold (range: 0.9–4.9-fold) and gametocytes by up to 1.45-fold (range: 0.38–1.45-fold) compared to pre-apheresis densities. No single haematocrit layer contained > 40% of all the recovered P. vivax asexual parasites. Ex vivo concentration of parasites by Percoll gradient centrifugation of whole blood achieved greater concentration of gametocytes than apheresis. Mosquito transmission was enhanced by up to fivefold in a single apheresis sample compared to pre-apheresis. Conclusion The modest level of parasite concentration suggests that the use of apheresis may not be an ideal method for harvesting P. vivax. Trial Registration Australia New Zealand Clinical Trials Registry (ANZCTR) Trial ID: ACTRN12617001502325 registered on 19th October 2017. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373812.
Læs mere Tjek på PubMedEmerging Infectious Diseases, 13.01.2021 Tilføjet 13.01.2021 23:21
Malaria Journal, 13.01.2021 Tilføjet 13.01.2021 13:26
Abstract Background The World Health Organization recommends confirmatory diagnosis by microscopy or malaria rapid diagnostic test (RDT) in patients with suspected malaria. In recent years, mobile medical applications (MMAs), which can interpret RDT test results have entered the market. To evaluate the performance of commercially available MMAs, an evaluation was conducted by comparing RDT results read by MMAs to RDT results read by the human eye. Methods Five different MMAs were evaluated on six different RDT products using cultured Plasmodium falciparum blood samples at five dilutions ranging from 20 to 1000 parasites (p)/microlitre (µl) and malaria negative blood samples. The RDTs were performed in a controlled, laboratory setting by a trained operator who visually read the RDT results. A second trained operator then used the MMAs to read the RDT results. Sensitivity (Sn) and specificity (Sp) for the RDTs were calculated in a Bayesian framework using mixed models. Results The RDT Sn of the P. falciparum (Pf) test line, when read by the trained human eye was significantly higher compared to when read by MMAs (74% vs. average 47%) at samples of 20 p/µl. In higher density samples, the Sn was comparable to the human eye (97%) for three MMAs. The RDT Sn of test lines that detect all Plasmodium species (Pan line), when read by the trained human eye was significantly higher compared to when read by MMAs (79% vs. average 56%) across all densities. The RDT Sp, when read by the human eye or MMAs was 99% for both the Pf and Pan test lines across all densities. Conclusions The study results show that in a laboratory setting, most MMAs produced similar results interpreting the Pf test line of RDTs at parasite densities typically found in patients that experience malaria symptoms (> 100 p/µl) compared to the human eye. At low parasite densities for the Pf line and across all parasite densities for the Pan line, MMAs were less accurate than the human eye. Future efforts should focus on improving the band/line detection at lower band intensities and evaluating additional MMA functionalities like the ability to identify and classify RDT errors or anomalies.
Læs mere Tjek på PubMedMalaria Journal, 13.01.2021 Tilføjet 13.01.2021 13:26
Abstract Background School-based behaviour change communication interventions could help to achieve behavioural changes in the school and enhance the enrollment of the students and teachers as health messengers to local communities. Evidence on the impacts of the school-engaged malaria preventive interventions are limited as far as the social and behaviour change communication (SBCC) is concerned. This study examined the effectiveness of the school-based SBCC approach on insecticide-treated nets (ITNs) utilization among primary school students in malaria-endemic settings of Ethiopia. Methods Various participatory, educational, and communication interventions were implemented from 2017 to 2019 in 75 primary schools and respective villages in Jimma to promote malaria preventive practices. A quasi-experimental design was conducted with randomly selected 798 students (i.e. 399 intervention and 399 control groups). Data were collected by trained interviewers using structured questionnaires. The SPSS version 26 software was used to analyse the data. Propensity score matching analysis was performed to control for possible confounding biases. The average effects of the intervention were estimated using multivariate general linear modelling to estimate for mean differences and odds ratio based on the nature of data. Results The result showed that the ITNs utilization was 6.857 folds in the intervention groups compared to the counterpart; (OR = 6.857; 95% CI: (4.636, 10.1430); effect size = 39%). A mean differences (MD) of self-efficacy (MD = 15.34; 95% CI: 13.73 to 16.95), knowledge (MD = 5.83; 95% CI: 5.12 to 6.55), attitude (MD = 6.01; 95% CI: 5.26 to 6.77), perceived malaria risk (MD = 2.14; 95% CI: 1.53 to 2.76), and perceived family supports (MD = 6.39; 95% CI: 5.57 to 7.22) were observed favoring the intervention. Multivariable logistic regression modelling results showed that knowledge (β = 0.194, 95% CI: 1.09 to 1.35) and perceived family supports (β = 0.165, 95% CI: 1.11 to 1.25) and self-efficacy (β = 0.10, 95% CI: 1.22 to 2.32) predicted the ITN utilization among the school children. Conclusions The finding of this study suggested that the school-based SBCC approach combined with peer education activities advanced the malaria-related knowledge, attitude, self-efficacy, risk perceptions, and family supports and ultimately improved the sustained use of ITNs among school-going children. Further research should be conducted to understand the mechanism of these effects given the influences of social, health services, and school systems are considered.
Læs mere Tjek på PubMedMalaria Journal, 13.01.2021 Tilføjet 13.01.2021 13:26
Abstract Background Malaria remains a major public health problem in South America, mostly in the Amazon region. Among newly proposed ways of controlling malaria transmission to humans, paratransgenesis is a promising alternative. Paratransgenesis aims to inhibit the development of parasites within the vector through the action of genetically modified bacteria. The first step towards successful paratransgenesis in the Amazon is the identification of Anopheles darlingi symbiotic bacteria, which are transmitted vertically among mosquitoes, and are not pathogenic to humans. Methods Culturable bacteria associated with An. darlingi and their breeding sites were isolated by conventional microbiological techniques. Isolated strains were transformed with a GFP expressing plasmid, pSPT-1-GFP, and reintroduced in mosquitoes by feeding. Their survival and persistence in the next generation was assessed by the isolation of fluorescent bacteria from eggs, larvae, pupae and adult homogenates. Results A total of 179 bacterial strains were isolated from samples from two locations, Coari and Manaus. The predominant genera identified in this study were Acinetobacter, Enterobacter, Klebsiella, Serratia, Bacillus, Elizabethkingia, Stenotrophomonas and Pantoea. Two isolated strains, Serratia-Adu40 and Pantoea-Ovo3, were successfully transformed with the pSPT-1-GFP plasmid and expressed GFP. The fluorescent bacteria fed to adult females were transferred to their eggs, which persisted in larvae and throughout metamorphosis, and were detected in adult mosquitoes of the next generation. Conclusion Serratia-Adu40 and Pantoea-Ovo3 are promising candidates for paratransgenesis in An. darlingi. Further research is needed to determine if these bacteria are vertically transferred in nature.
Læs mere Tjek på PubMedMalaria Journal, 13.01.2021 Tilføjet 13.01.2021 13:26
Abstract Background Malaria surveillance is critical for monitoring changes in malaria morbidity over time. National Malaria Control Programmes often rely on surrogate measures of malaria incidence, including the test positivity rate (TPR) and total laboratory confirmed cases of malaria (TCM), to monitor trends in malaria morbidity. However, there are limited data on the accuracy of TPR and TCM for predicting temporal changes in malaria incidence, especially in high burden settings. Methods This study leveraged data from 5 malaria reference centres (MRCs) located in high burden settings over a 15-month period from November 2018 through January 2020 as part of an enhanced health facility-based surveillance system established in Uganda. Individual level data were collected from all outpatients including demographics, laboratory test results, and village of residence. Estimates of malaria incidence were derived from catchment areas around the MRCs. Temporal relationships between monthly aggregate measures of TPR and TCM relative to estimates of malaria incidence were examined using linear and exponential regression models. Results A total of 149,739 outpatient visits to the 5 MRCs were recorded. Overall, malaria was suspected in 73.4% of visits, 99.1% of patients with suspected malaria received a diagnostic test, and 69.7% of those tested for malaria were positive. Temporal correlations between monthly measures of TPR and malaria incidence using linear and exponential regression models were relatively poor, with small changes in TPR frequently associated with large changes in malaria incidence. Linear regression models of temporal changes in TCM provided the most parsimonious and accurate predictor of changes in malaria incidence, with adjusted R2 values ranging from 0.81 to 0.98 across the 5 MRCs. However, the slope of the regression lines indicating the change in malaria incidence per unit change in TCM varied from 0.57 to 2.13 across the 5 MRCs, and when combining data across all 5 sites, the R2 value reduced to 0.38. Conclusions In high malaria burden areas of Uganda, site-specific temporal changes in TCM had a strong linear relationship with malaria incidence and were a more useful metric than TPR. However, caution should be taken when comparing changes in TCM across sites.
Læs mere Tjek på PubMedEmerging Infectious Diseases, 12.01.2021 Tilføjet 13.01.2021 13:19
Malaria Journal, 13.01.2021 Tilføjet 13.01.2021 03:02
Abstract Background Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. Methods Parasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR. Results The most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants. Conclusion The unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria.
Læs mere Tjek på PubMedRanju Baral, Ann Levin, Chris Odero, Clint Pecenka, Collins Tabu, Evans Mwendo, George Bonsu, John Bawa, John Frederick Dadzie, Joyce Charo, Kwadwo Odei Antwi-Agyei, Kwame Amponsa-Achianou, Rose Eddah Jalango, Rouden Mkisi, Scott Gordon, Temwa Mzengeza, Winthrop Morgan, Farzana Muhib
PLoS One Infectious Diseases, 11.01.2021 Tilføjet 12.01.2021 05:52by Ranju Baral, Ann Levin, Chris Odero, Clint Pecenka, Collins Tabu, Evans Mwendo, George Bonsu, John Bawa, John Frederick Dadzie, Joyce Charo, Kwadwo Odei Antwi-Agyei, Kwame Amponsa-Achianou, Rose Eddah Jalango, Rouden Mkisi, Scott Gordon, Temwa Mzengeza, Winthrop Morgan, Farzana Muhib Background The RTS,S/ASO1E malaria vaccine is being piloted in three countries—Ghana, Kenya, and Malawi—as part of a coordinated evaluation led by the World Health Organization, with support from global partners. This study estimates the costs of continuing malaria vaccination upon completion of the pilot evaluation to inform decision-making and planning around potential further use of the vaccine in pilot areas. Methods We used an activity-based costing approach to estimate the incremental costs of continuing to deliver four doses of RTS,S/ASO1E through the existing Expanded Program on Immunization platform, from each government’s perspective. The RTS,S/ASO1E pilot introduction plans were reviewed and adapted to identify activities for costing. Key informant interviews with representatives from Ministries of Health (MOH) were conducted to inform the activities, resource requirements, and assumptions that, in turn, inform the analysis. Both financial and economic costs per dose, cost of delivery per dose, and cost per fully vaccinated child (FVC) are estimated and reported in 2017 USD units. Results At a vaccine price of $5 per dose and assuming the vaccine is donor-funded, our estimated incremental financial costs range from $1.70 (Kenya) to $2.44 (Malawi) per dose, $0.23 (Malawi) to $0.71 (Kenya) per dose delivered (excluding procurement add-on costs), and $11.50 (Ghana) to $13.69 (Malawi) per FVC. Estimates of economic costs per dose are between three and five times higher than financial costs. Variations in activities used for costing, procurement add-on costs, unit costs of per diems, and allowances contributed to differences in cost estimates across countries. Conclusion Cost estimates in this analysis are meant to inform country decision-makers as they face the question of whether to continue malaria vaccination, should the intervention receive a positive recommendation for broader use. Additionally, important cost drivers for vaccine delivery are highlighted, some of which might be influenced by global and country-specific financing and existing procurement mechanisms. This analysis also adds to the evidence available on vaccine delivery costs for products delivered outside the standard immunization schedule.
Læs mere Tjek på PubMedMalaria Journal, 11.01.2021 Tilføjet 12.01.2021 02:08
Abstract Background Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. Material and methods Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1–3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. Results The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. Conclusion We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.
Læs mere Tjek på PubMedMalaria Journal, 10.01.2021 Tilføjet 11.01.2021 05:51
Abstract Background Many countries, including Rwanda, have mosquito monitoring programmes in place to support decision making in the fight against malaria. However, these programmes can be costly, and require technical (entomological) expertise. Involving citizens in data collection can greatly support such activities, but this has not yet been thoroughly investigated in a rural African context. Methods Prior to the implementation of such a citizen-science approach, a household entomological survey was conducted in October–November 2017 and repeated one year later in Busoro and Ruhuha sectors, in southern and eastern province of Rwanda, respectively. The goal was to evaluate the perception of mosquito nuisance reported by citizens as a potential indicator for malaria vector hotspots. Firstly, mosquito abundance and species composition were determined using Centers for Disease Control and Prevention (CDC) light traps inside the houses. Secondly, household members were interviewed about malaria risk factors and their perceived level of mosquito nuisance. Results Tiled roofs, walls made of mud and wood, as well as the number of occupants in the house were predictors for the number of mosquitoes (Culicidae) in the houses, while the presence of eaves plus walls made of mud and wood were predictors for malaria vector abundance. Perception of mosquito nuisance reported indoors tended to be significantly correlated with the number of Anopheles gambiae sensu lato (s.l.) and Culicidae collected indoors, but this varied across years and sectors. At the village level, nuisance also significantly correlated with An. gambiae s.l. and total mosquito density, but only in 2018 while not in 2017. Conclusions Perception of mosquito nuisance denoted in a questionnaire survey could be used as a global indicator of malaria vector hotspots. Hence, involving citizens in such activities can complement malaria vector surveillance and control.
Læs mere Tjek på PubMedMalaria Journal, 9.01.2021 Tilføjet 09.01.2021 20:37
Abstract Background Malaria remains highly endemic in Cameroon. The rapid emergence and spread of drug resistance was responsible for the change from monotherapies to artemisinin-based combinations. This systematic review and meta-analysis aimed to determine the prevalence and distribution of Plasmodium falciparum drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon from January 1998 to August 2020. Methods The PRISMA-P and PRISMA statements were adopted in the inclusion of studies on single nucleotide polymorphisms (SNPs) of P. falciparum anti-malarial drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfatp6, Pfcytb and Pfk13). The heterogeneity of the included studies was evaluated using the Cochran’s Q and I2 statistics. The random effects model was used as standard in the determination of heterogeneity between studies. Results Out of the 902 records screened, 48 studies were included in this aggregated meta-analysis of molecular data. A total of 18,706 SNPs of the anti-malarial drug resistance genes were genotyped from 47,382 samples which yielded a pooled prevalence of 35.4% (95% CI 29.1–42.3%). Between 1998 and 2020, there was significant decline (P
Læs mere Tjek på PubMedMalaria Journal, 9.01.2021 Tilføjet 09.01.2021 20:37
Abstract Background Malaria control in sub-Saharan Africa relies upon prompt case management with artemisinin-based combination therapy (ACT). Ring-stage parasite mRNA, measured by sbp1 quantitative reverse-transcriptase PCR (qRT-PCR), was previously reported to persist after ACT treatment and hypothesized to reflect temporary arrest of the growth of ring-stage parasites (dormancy) following exposure to artemisinins. Here, the persistence of ring-stage parasitaemia following ACT and non-ACT treatment was examined. Methods Samples were used from naturally infected Malian gametocyte carriers who received dihydroartemisinin–piperaquine (DP) or sulfadoxine–pyrimethamine (SP–AQ) with or without gametocytocidal drugs. Gametocytes and ring-stage parasites were quantified by qRT-PCR during 42 days of follow-up. Results At baseline, 89% (64/73) of participants had measurable ring-stage parasite mRNA. Following treatment, the proportion of ring-stage parasite-positive individuals and estimated densities declined for all four treatment groups. Ring-stage parasite prevalence and density was generally lower in arms that received DP compared to SP–AQ. This finding was most apparent days 1, 2, and 42 of follow-up (p
Læs mere Tjek på PubMedMalaria Journal, 9.01.2021 Tilføjet 09.01.2021 20:37
Abstract Background Anopheles species identification is essential for an effective malaria vector control programme. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been developed to identify adult Anopheles species, using the legs or the cephalothorax. The protein repertoire from arthropods can vary according to compartment, but there is no general consensus regarding the anatomic part to be used. Methods To determine the body part of the Anopheles mosquitoes best suited for the identification of field specimens, a mass spectral library was generated with head, thorax with wings and legs of Anopheles gambiae, Anopheles arabiensis and Anopheles funestus obtained from reference centres. The MSL was evaluated using two independent panels of 52 and 40 An. gambiae field-collected in Mali and Guinea, respectively. Geographic variability was also tested using the panel from Mali and several databases containing added specimens from Mali and Senegal. Results Using the head and a database without specimens from the same field collection, the proportion of interpretable and correct identifications was significantly higher than using the other body parts at a threshold value of 1.7 (p
Læs mere Tjek på PubMedMalaria Journal, 9.01.2021 Tilføjet 09.01.2021 20:37
Abstract Background The sequestration of Plasmodium falciparum infected cells in the placenta results in placental malaria (PM). It activates the mother's immune cells and induces secretion of inflammatory cytokines, which might influence pregnancy outcomes. This study aims to investigate the cytokines (levels IL-4, IL-6, IL-10, IL-17A, and INF γ) in maternal peripheral, placental, and umbilical cord blood in response to PM and the extent to which this may influence maternal haemoglobin levels and birth weight. Methods A total of 185 consenting Sudanese women from Blue Nile State were enrolled at delivery time in a cross-sectional study conducted between Jan 2012-Dec 2015. Malaria infection in the collected maternal peripheral, placental, umbilical cord samples was determined microscopically, and ELISA was used to measure the plasma levels IL-4, IL-6, IL-10, IL-17A, and INF γ in the collected positive and negative malaria samples. Results Elevated levels of IL-4 and IL-10 and reduced levels of IL-6 were detected in the malaria positive samples in comparison to the negative ones in the three types of the samples investigated. Maternal, IL-4 and IL-10 were significantly higher in the samples collected from the PM infected group compared to the non-infected control (P
Læs mere Tjek på PubMedBMC Infectious Diseases, 9.01.2021 Tilføjet 09.01.2021 20:17
Abstract Background Transmission stemming from asymptomatic infections is increasingly being recognized as a threat to malaria elimination. In many regions, malaria transmission is seasonal. It is not well understood whether Plasmodium falciparum modulates its investment in transmission to coincide with seasonal vector abundance. Methods We sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in the dry season, in two sites in western Kenya, representing different transmission intensities (Chulaimbo, moderate transmission, and Homa Bay, low transmission). Blood samples were screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-qPCR. Results Parasite prevalence by qPCR was 27.1% (Chulaimbo, dry), 48.2% (Chulaimbo, wet), 9.4% (Homabay, dry), and 7.8% (Homabay, wet). Mean parasite densities did not differ between seasons (P = 0.562). pfs25 transcripts were detected in 119/456 (26.1%) of infections. In the wet season, fewer infections harbored detectable gametocytes (22.3% vs. 33.8%, P = 0.009), but densities were 3-fold higher (wet: 3.46 transcripts/uL, dry: 1.05 transcripts/uL, P 1 gametocyte per 2 uL blood), compared to 7.9% in the wet season. Children aged 5–15 years harbored 76.7% of infections with gametocytes at moderate-to-high densities. Conclusions Parasites increase their investment in transmission in the wet season, reflected by higher gametocyte densities. Despite increased gametocyte densities, parasite density remained similar across seasons and were often below the limit of detection of microscopy or rapid diagnostic test, thus a large proportion of infective infections would escape population screening in the wet season. Seasonal changes of gametocytemia in asymptomatic infections need to be considered when designing malaria control measures.
Læs mere Tjek på PubMedKok Pim Kua, Shaun Wen Huey Lee
PLoS One Infectious Diseases, 8.01.2021 Tilføjet 09.01.2021 00:21by Kok Pim Kua, Shaun Wen Huey Lee Background Mosquito-borne diseases remain a significant public health problem in tropical regions. Housing improvements such as screening of doors and windows may be effective in reducing disease transmission, but the impact remains unclear. Objectives To examine whether housing interventions were effective in reducing mosquito densities in homes and the impact on the incidence of mosquito-borne diseases. Methods In this systematic review and meta-analysis, we searched 16 online databases, including NIH PubMed, CINAHL Complete, LILACS, Ovid MEDLINE, and Cochrane Central Register of Controlled Trials for randomized trials published from database inception to June 30, 2020. The primary outcome was the incidence of any mosquito-borne diseases. Secondary outcomes encompassed entomological indicators of the disease transmission. I2 values were used to explore heterogeneity between studies. A random-effects meta-analysis was used to assess the primary and secondary outcomes, with sub-group analyses for type of interventions on home environment, study settings (rural, urban, or mixed), and overall house type (traditional or modern housing), Results The literature search yielded 4,869 articles. After screening, 18 studies were included in the qualitative review, of which nine were included in the meta-analysis. The studies enrolled 7,200 households in Africa and South America, reporting on malaria or dengue only. The type of home environmental interventions included modification to ceilings and ribbons to close eaves, screening doors and windows with nets, insecticide-treated wall linings in homes, nettings over gables and eaves openings, mosquito trapping systems, metal-roofed houses with mosquito screening, gable windows and closed eaves, and prototype houses using southeast Asian designs. Pooled analysis depicted a lower risk of mosquito-borne diseases in the housing intervention group (OR = 0.68; 95% CI = 0.48 to 0.95; P = 0.03). Subgroup analysis depicted housing intervention reduced the risk of malaria in all settings (OR = 0.63; 95% CI = 0.39 to 1.01; P = 0.05). In urban environment, housing intervention was found to decrease the risk of both malaria and dengue infections (OR = 0.52; 95% CI = 0.27 to 0.99; P = 0.05).Meta-analysis of pooled odds ratio showed a significant benefit of improved housing in reducing indoor vector densities of both Aedes and Anopheles (OR = 0.35; 95% CI = 0.23 to 0.54; p
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 08.01.2021 03:53
Abstract Background Multi-genotype malaria infections are frequent in endemic area, and people commonly harbour several genetically distinct Plasmodium falciparum variants. The influence of genetic multiplicity and whether some specific genetic variants are more or less likely to invest into gametocyte production is not clearly understood. This study explored host and parasite-related risk factors for gametocyte carriage, and the extent to which some specific P. falciparum genetic variants are associated with gametocyte carriage. Methods Gametocytes and asexual forms were detected by light microscopy on thick smears collected between 2010 and 2012 in Nanoro, Burkina Faso. Merozoite surface protein 1 and 2 were genotyped by nested PCR on clinical samples. Associations between gametocyte carriage and factors, including multiplicity of infection, parasite density, patient age, gender, haemoglobin (Hb) level, and body temperature were assessed. The relationship between the presence of a particular msp1 and msp2 genetic variants and gametocyte carriage was also explored. Results Of the 724 samples positive to P. falciparum and successfully genotyped, gametocytes were found in 48 samples (6.63%). There was no effect of patient gender, age and body temperature on gametocyte carriage. However, the probability of gametocyte carriage significantly increased with increasing values of multiplicity of infection (MOI). Furthermore, there was a negative association between parasite density and gametocyte carriage. MOI decreased with parasite density in gametocyte-negative patients, but increased in gametocyte carriers. The probability of gametocyte carriage decreased with Hb level. Finally, the genetic composition of the infection influenced gametocyte carriage. In particular, the presence of RO33 increased the odds of developing gametocytes by 2 while the other allelic families K1, MAD20, FC27, and 3D7 had no significant impact on the occurrence of gametocytes in infected patients. Conclusion This study provides insight into potential factors influencing gametocyte production in symptomatic patients. The findings contribute to enhance understanding of risk factors associated with gametocyte carriage in humans. Trial registration NCT01232530.
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 08.01.2021 03:53
Abstract Impaired autonomic control of postural homeostasis resulting in orthostatic hypotension has been described in falciparum malaria. However, severe orthostatic intolerance in Plasmodium vivax has been rarely reported. A case of non-immune previously healthy Thai woman presenting with P. vivax infection with well-documented orthostatic hypotension is described. In addition to oral chloroquine and intravenous artesunate, the patient was treated with fluid resuscitation and norepinephrine. During hospitalization, her haemodynamic profile revealed orthostatic hypotension persisting for another three days after microscopic and polymerase chain reaction confirmed parasite clearance. Potential causes are discussed.
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 08.01.2021 03:53
Abstract Background The Malaria Elimination Demonstration Project (MEDP) maintained a workforce of 235 Village Malaria Workers (VMWs) and 25 Malaria Field Coordinators (MFCs) to conduct disease surveillance, case management, IEC/BCC activities, capacity building, and monitoring of vector control activities in 1233 villages of Mandla, a high malaria endemic district of Madhya Pradesh in central India. Methods The induction training was conducted for 3 days on malaria diagnosis, treatment, prevention, and ethics. All trainings were assessed using a pre and post-training assessment questionnaire, with 70% marks as qualifying threshold. The questionnaire was divided into three thematic areas viz. general knowledge related to malaria (KAP), diagnosis and treatment (DXRX), and vector control (PVC). Results In 2017, the project trained 330 candidates, followed by 243 and 247 candidates in 2018 and 2019, respectively. 94.3% candidates passed after a single training session. Almost all (95%) candidates showed improvement in knowledge after the training with 4% showing no effect and 1% showing deterioration. Progressive improvement in scores of 2017 cohort was seen along with significant improvement in performance of candidates in 2019 after the introduction of systematic monitoring and ‘shadowing’ training exercises. Conclusion The project has successfully demonstrated the value of recruitment of workers from the study area, outcome of training, and performance evaluation of field staff in malaria elimination programme. This careful strategy of recruitment and training resulted in a work-force that was capable of independently conducting surveillance, case management, vector control, and Information Education Communication/Behaviour Change Communication (IEC/BCC). The learnings of this study, including the training modules and monitoring processes, can be used to train the health delivery staff for achieving national goal for malaria elimination by 2030. Similar training and monitoring programmes could also be used for other public health delivery programmes.
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 08.01.2021 03:53
Abstract Background The prevalence and genotypes of G6PD deficiency vary worldwide, with higher prevalence in malaria endemic areas. The first-time assessment of G6PD deficiency prevalence and molecular characterization of G6PD mutations in the Lao Theung population were performed in this study. Methods A total of 252 unrelated Lao Theung participants residing in the Lao People’s Democratic Republic (PDR) were recruited. All participant samples were tested for G6PD enzyme activity and G6PD gene mutations. The amplification refractory mutation system (ARMS)-PCR for detecting G6PD Aures was developed. Results The G6PD mutations were detected in 11.51% (29/252) of the participants. Eight G6PD mutations were detected. The G6PD Aures was the most common mutation identified in this cohort, which represented 58.62% (17/29) of all mutation. The mutation pattern was homogenous, predominantly involving the G6PD Aures mutation (6.75%), followed by 1.19% G6PD Union and 0.79% each G6PD Jammu, G6PD Mahidol and G6PD Kaiping. One subject (0.4%) each carried G6PD Viangchan and G6PD Canton. Interestingly, one case of coinheritance of G6PD Aures and Quing Yan was detected in this cohort. Based on levels of G6PD enzyme activity, the prevalence of G6PD deficiency in the Lao Theung population was 9.13% (23/252). The prevalence of G6PD deficient males and females (activity
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 07.01.2021 17:22
Abstract Background There is an increasing need for finer spatial resolution data on malaria risk to provide micro-stratification to guide sub-national strategic plans. Here, spatial-statistical techniques are used to exploit routine data to depict sub-national heterogeneities in test positivity rate (TPR) for malaria among patients attending health facilities in Kenya. Methods Routine data from health facilities (n = 1804) representing all ages over 24 months (2018–2019) were assembled across 8 counties (62 sub-counties) in Western Kenya. Statistical model-based approaches were used to quantify heterogeneities in TPR and uncertainty at fine spatial resolution adjusting for missingness, population distribution, spatial data structure, month, and type of health facility. Results The overall monthly reporting rate was 78.7% (IQR 75.0–100.0) and public-based health facilities were more likely than private facilities to report ≥ 12 months (OR 5.7, 95% CI 4.3–7.5). There was marked heterogeneity in population-weighted TPR with sub-counties in the north of the lake-endemic region exhibiting the highest rates (exceedance probability > 70% with 90% certainty) where approximately 2.7 million (28.5%) people reside. At micro-level the lowest rates were in 14 sub-counties (exceedance probability
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 07.01.2021 17:22
Abstract Background More than 200 million people live in areas of highly seasonal malaria transmission where Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) was recommended in 2012 by WHO. This strategy is now implemented widely and protected more than 19 million children in 2018. It was previously reported that exposure to SMC reduced antibody levels to AMA1, MSP-142 and CSP, but the duration of exposure to SMC up to three 3 years, had no effect on antibody levels to MSP-142 and CSP. Methods In 2017, a cross-sectional survey was carried out 1 month after the last dose of SMC had been given to children aged 4–5 years randomly selected from areas where SMC had been given for 2 or 4 years during the malaria transmission season. A total of 461 children were enrolled, 242 children in areas where SMC had been implemented for 4 years and 219 children in areas where SMC had been implemented for 2 years. Antibody extracted from dry blood spots was used to measure IgG levels to the malaria antigens CSP, MSP-142 and AMA1 by ELISA. Results The prevalence of antibodies to MSP-142 was similar in children who had received SMC for 4 years compared to those who had received SMC for only 2 years (85.1 vs 86.0%, ajusted odd ratio (aOR) = 1.06, 95% confidence intervals (CI 0.62–1.80), p = 0.80). The prevalence of antibodies to AMA-1 and to CSP was not lower in children who received SMC for 4 years compared to those who had received SMC for only 2 years (95.3 vs 88.8%, aOR = 3.16, 95% CI 1.44–6.95, p = 0.004 for AMA-1; and 91.2 vs 81.9%, aOR = 3.14, 95% CI 1.70–5.76, p
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 07.01.2021 17:22
Abstract Background In 2018, an estimated 228 million cases of malaria occurred worldwide. Countries are far from having achieved reasonable levels of national protocol compliance among health workers. Lack of awareness of treatment protocols and treatment resistance by prescribers threatens to undermine progress when it comes to reducing the prevalence of this disease. This study sought to evaluate the degree of knowledge and practices regarding malaria diagnosis and treatment amongst prescribers working at the public health facilities of Bata, Equatorial Guinea. Methods A cross-sectional survey was conducted in October-December 2017 amongst all public health professionals who attended patients under the age of 15 years, with suspected malaria in the Bata District of Equatorial Guinea. Practitioners were asked about their practices and knowledge of malaria and the National Malaria Treatment Guidelines. A bivariate analysis and a logistic regression model were used to determine factors associated with their knowledge. Results Among the 44 practitioners interviewed, 59.1% worked at a Health Centre and 40.9% at the District Hospital of Bata. Important differences in knowledge and practices between hospital and health centre workers were found. Clinical diagnosis was more frequently by practitioners at the health centres (p = 0.059), while microscopy confirmation was more frequent at regional hospital (100%). Intramuscular artemether was the anti-malarial most administrated at the health centres (50.0%), while artemether-lumefantrine was the treatment most used at the regional hospital (66.7%). Most practitioners working at public health facilities (63.6%) have a low level of knowledge regarding the National Malaria Treatment Guidelines. While knowledge regarding malaria, the National Malaria Treatment Guidelines and treatment resistances is low, it was higher amongst hospital workers than amongst practitioners at health centres. Conclusions It is essential to reinforce practitioners’ knowledge, treatment and diagnosis practices and use of the National Malaria Treatment Guidelines in order to improve malaria case management and disease control in the region. A specific malaria training programme ensuring ongoing updates training is necessary in order to ensure that greater experience does not entail obsolete knowledge and, consequently, inadequate diagnosis and treatment practices.
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 07.01.2021 17:22
Abstract Background Malaria is a top cause of mortality on the island nation of Madagascar, where many rural communities rely on subsistence agriculture and livestock production. Understanding feeding behaviours of Anopheles in this landscape is crucial for optimizing malaria control and prevention strategies. Previous studies in southeastern Madagascar have shown that Anopheles mosquitoes are more frequently captured within 50 m of livestock. However, it remains unknown whether these mosquitoes preferentially feed on livestock. Here, mosquito blood meal sources and Plasmodium sporozoite rates were determined to evaluate patterns of feeding behaviour in Anopheles spp. and malaria transmission in southeastern Madagascar. Methods Across a habitat gradient in southeastern Madagascar 7762 female Anopheles spp. mosquitoes were collected. Of the captured mosquitoes, 492 were visibly blood fed and morphologically identifiable, and a direct enzyme-linked immunosorbent assay (ELISA) was used to test for swine, cattle, chicken, human, and dog blood among these specimens. Host species identification was confirmed for multiple blood meals using PCR along with Sanger sequencing. Additionally, 1,607 Anopheles spp. were screened for the presence of Plasmodium falciparum, P. vivax-210, and P. vivax 247 circumsporozoites (cs) by ELISA. Results Cattle and swine accounted, respectively, for 51% and 41% of all blood meals, with the remaining 8% split between domesticated animals and humans. Of the 1,607 Anopheles spp. screened for Plasmodium falciparum, Plasmodium vivax 210, and Plasmodium vivax 247 cs-protein, 45 tested positive, the most prevalent being P. vivax 247, followed by P. vivax 210 and P. falciparum. Both variants of P. vivax were observed in secondary vectors, including Anopheles squamosus/cydippis, Anopheles coustani, and unknown Anopheles spp. Furthermore, evidence of coinfection of P. falciparum and P. vivax 210 in Anopheles gambiae sensu lato (s.l.) was found. Conclusions Here, feeding behaviour of Anopheles spp. mosquitoes in southeastern Madagascar was evaluated, in a livestock rich landscape. These findings suggest largely zoophagic feeding behaviors of Anopheles spp., including An. gambiae s.l. and presence of both P. vivax and P. falciparum sporozoites in Anopheles spp. A discordance between P. vivax reports in mosquitoes and humans exists, suggesting high prevalence of P. vivax circulating in vectors in the ecosystem despite low reports of clinical vivax malaria in humans in Madagascar. Vector surveillance of P. vivax may be relevant to malaria control and elimination efforts in Madagascar. At present, the high proportion of livestock blood meals in Madagascar may play a role in buffering (zooprophylaxis) or amplifying (zoopotentiation) the impacts of malaria. With malaria vector control efforts focused on indoor feeding behaviours, complementary approaches, such as endectocide-aided vector control in livestock may be an effective strategy for malaria reduction in Madagascar.
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 07.01.2021 17:22
Abstract Background Advances in digitized video-tracking and behavioural analysis have enabled accurate recording and quantification of mosquito flight and host-seeking behaviours, facilitating development of individual (agent) based models at much finer spatial scales than previously possible. Methods Quantified behavioural parameters were used to create a novel virtual testing model, capable of accurately simulating indoor flight behaviour by a virtual population of host-seeking mosquitoes as they interact with and respond to simulated stimuli from a human-occupied bed net. The model is described, including base mosquito behaviour, state transitions, environmental representation and host stimulus representation. Results In the absence of a bed net and human host bait, flight distribution of the model population was relatively uniform throughout the arena. Introducing an unbaited untreated bed net induced a change in distribution with an increase in landing events on the net surface, predominantly on the sides of the net. Adding the presence of a simulated human bait dramatically impacted flight distribution patterns, exploratory foraging and, the number and distribution of landing positions on the net, which were determined largely by the orientation of the human within. The model replicates experimental results with free-flying living mosquitoes at human-occupied bed nets, where contact occurs predominantly on the top surface of the net. This accuracy is important as it quantifies exposure to the lethal insecticide residues that may be unique to the net roof (or theoretically any other surface). Number of net contacts and height of contacts decreased with increasing attractant dispersal noise. Conclusions Results generated by the model are an accurate representation of actual mosquito behaviour recorded at and around a human-occupied bed net in untreated and insecticide-treated nets. This fine-grained model is highly flexible and has significant potential for in silico screening of novel bed net designs, potentially reducing time and cost and accelerating the deployment of new and more effective tools for protecting against malaria in sub-Saharan Africa.
Læs mere Tjek på PubMedMalaria Journal, 7.01.2021 Tilføjet 07.01.2021 17:22
Abstract Background Physical durability of long-lasting-insecticidal nets (LLIN) is an important aspect of the effectiveness of LLIN as a malaria prevention tool, but there is limited data on performance across locations and products. This secondary analysis of data from the VectorWorks project from 10 sites in four African countries involving six LLIN brands provides such data. Methods A total of 4672 campaign nets from 1976 households were recruited into prospective cohort studies 2–6 months after distribution through campaigns and followed for 3 years in Mozambique, Nigeria, DRC and Zanzibar, Tanzania. LLIN products included two 100 denier polyester LLIN (DawaPlus® 2.0, PermaNet® 2.0) distributed in five sites and four 150 denier polyethylene LLIN (Royal Sentry®, MAGNet®, DuraNet©, Olyset™ Net) distributed in five sites. Primary outcome was LLIN survival in serviceable condition and median survival in years. Net use environment and net care variables were collected during four household surveys. Determinants of physical durability were explored by survival analysis and Cox regression models with risk of failure starting with the first hanging of the net. Results Definite outcomes for physical durability were obtained for 75% of study nets. After 31 to 37 months survival in serviceable condition varied between sites by 63 percentage-points, from 17 to 80%. Median survival varied by 3.7 years, from 1.6 to 5.3 years. Similar magnitude of variation was seen for polyethylene and polyester LLIN and for the same brand. Cox regression showed increasing net care attitude in combination with exposure to net related messages to be the strongest explanatory variable of survival. However, differences between countries also remained significant. In contrast, no difference was seen for LLIN material types. Conclusions Variation in net use environment and net care is the main reason for differences in the physical durability of LLIN products in different locations. While some of these factors have been identified to work across countries, other factors remain poorly defined and further investigation is needed in this area. Grouping LLIN brands by similar textile characteristics, such as material or yarn strength, is insufficient to distinguish LLIN product performance suggesting a more differentiated, composite metric is needed.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 07.01.2021 06:58
Abstract The COVID-19 pandemic has resulted in massive global disruptions with considerable impact on the delivery of health services and national health programmes. Since the detection of the first COVID-19 case on 5th March 2020, the Royal Government of Bhutan implemented a number of containment measures including border closure and national lockdowns. Against the backdrop of this global COVID-19 pandemic response, there was a sudden surge of locally-transmitted malaria cases between June to August 2020. There were 20 indigenous cases (zero Plasmodium falciparum and 20 Plasmodium vivax) from a total of 49 cases (seven P. falciparum and 42 P. vivax) in 2020 compared to just two from a total of 42 in 2019. Over 80% of the cases were clustered in malaria endemic district of Sarpang. This spike of malaria cases was attributed to the delay in the delivery of routine malaria preventive interventions due to the COVID-19 pandemic. As a result, Bhutan is unlikely to achieve the national goal of malaria elimination by 2020.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 07.01.2021 06:58
Abstract Background The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum. Methods Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method. Results The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed. Conclusions The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 07.01.2021 06:58
Abstract Background Although autochthonous malaria cases are no longer reported in Anhui Province, China, imported malaria has become a major health concern. The proportion of reported malaria cases caused by Plasmodium ovale spp. increased to levels higher than expected during 2012 to 2019, and showed two peaks, 19.69% in 2015 and 19.35% in 2018. Methods A case-based retrospective study was performed using data collected from the China Information System for Disease Control and Prevention (CISDCP) and Information System for Parasitic Disease Control and Prevention (ISPDCP) from 2012 to 2019 to assess the trends and differences between Plasmodium ovale curtisi (P. o. curtisi) and Plasmodium ovale wallikeri (P. o. wallikeri). Epidemiological characteristics were analyzed using descriptive statistics. Results Plasmodium o. curtisi and P. o. wallikeri were found to simultaneously circulate in 14 African countries. Among 128 patients infected with P. ovale spp., the proportion of co-infection cases was 10.16%. Six cases of co-infection with P. ovale spp. and P. falciparum were noted, each presenting with two clinical attacks (the first attack was due to P. falciparum and the second was due to P. ovale spp.) at different intervals. Accurate identification of the infecting species was achieved among only 20.00% of cases of P. ovale spp. infection. At the reporting units, 32.17% and 6.96% of cases of P. ovale spp. infection were misdiagnosed as P. vivax and P. falciparum infections, respectively. Conclusion The present results indicate that the potential of P. ovale spp. to co-infect with other Plasmodium species has been previously underestimated, as is the incidence of P. ovale spp. in countries where malaria is endemic. P. o. curtisi may have a long latency period of > 3 years and potentially cause residual foci, thus posing challenges to the elimination of malaria in P. ovale spp.-endemic areas. Considering the low rate of species identification, more sensitive point-of-care detection methods need to be developed for P. ovale spp. and introduced in non-endemic areas.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 07.01.2021 06:58
Abstract Background Elevated angiopoietin-2 (Angpt-2) concentrations are associated with worse overall neurocognitive function in severe malaria survivors, but the specific domains affected have not been elucidated. Methods Ugandan children with severe malaria underwent neurocognitive evaluation a week after hospital discharge and at 6, 12 and 24 months follow-up. The relationship between Angpt-2 concentrations and age-adjusted, cognitive sub-scale z-scores over time were evaluated using linear mixed effects models, adjusting for disease severity (coma, acute kidney injury, number of seizures in hospital) and sociodemographic factors (age, gender, height-for-age z-score, socio-economic status, enrichment in the home environment, parental education, and any preschool education of the child). The Mullen Scales of Early Learning was used in children
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 07.01.2021 06:58
Abstract Background Malaria volunteers have contributed significantly to malaria control achieving a reduction of annual parasite incidence to pre-elimination levels in several townships across Myanmar. However, the volunteers’ role is changing as Myanmar transitions from a malaria control to elimination programme and towards the goal of universal health coverage. The aim of the study is to explore the perspectives of community leaders, members and malaria volunteers in South-East Myanmar on community-delivered models to inform an optimal design that targets malaria elimination in the context of primary health care in Myanmar. Methods Qualitative methods including focus group discussions (FGDs) with community members and current or ex-malaria volunteers, and participatory workshops with community leaders were conducted. All data collection tools were pilot tested with similar participants. The FGDs were stratified into male and female participants in consideration of diverse gender roles among the ethnic groups of Myanmar. Data saturation was the key cut-off point to cease recruitment of participants. Inductive thematic analysis was used. Results Community members were willing to be tested for malaria because they were concerned about the consequences of malaria although they were aware that malaria prevalence is low in their villages. Malaria volunteers were the main service providers for malaria and other infectious diseases in the community. Apart from malaria, the community identified common health problems such as the flu (fever, sneezing and coughing), diarrhoea, skin infections and tuberculosis as priority diseases in this order. Incorporating preventive, and whenever possible curative, services for those diseases into the current malaria volunteer model was recommended. Discussion and conclusion There was a gap between the communities’ expectations of health services and the health services currently being delivered by volunteers in the community that highlights the need for reassessment and reform of the volunteer model in the changing context. An evidence-based, community preferred, pragmatic community-delivered integrated model should be constructed based on the context of malaria elimination and progressing towards universal health coverage in Myanmar.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 07.01.2021 06:58
Abstract Background Accurate measurement of anti-malarial drug concentrations in therapeutic efficacy studies is essential to distinguish between inadequate drug exposure and anti-malarial drug resistance, and to inform optimal anti-malarial dosing in key target population groups. Methods A sensitive and selective LC–MS/MS method was developed and validated for the simultaneous determination of amodiaquine and its active metabolite, desethylamodiaquine, and used to describe their pharmacokinetic parameters in Ghanaian patients with uncomplicated falciparum malaria treated with the fixed-dose combination, artesunate-amodiaquine. Results The day-28 genotype-adjusted adequate clinical and parasitological response rate in 308 patients studied was > 97% by both intention-to-treat and per-protocol analysis. After excluding 64 patients with quantifiable amodiaquine concentrations pre-treatment and 17 with too few quantifiable concentrations, the pharmacokinetic analysis included 227 patients (9 infants, 127 aged 1–4 years, 91 aged ≥ 5 years). Increased median day-3 amodiaquine concentrations were associated with a lower risk of treatment failure [HR 0.87 (95% CI 0.78–0.98), p = 0.021]. Amodiaquine exposure (median AUC0-∞) was significantly higher in infants (4201 ng h/mL) and children aged 1–5 years (1994 ng h/mL) compared to older children and adults (875 ng h/mL, p = 0.001), even though infants received a lower mg/kg amodiaquine dose (median 25.3 versus 33.8 mg/kg in older patients). Desethylamodiaquine AUC0-∞ was not significantly associated with age. No significant safety concerns were identified. Conclusions Efficacy of artesunate-amodiaquine at currently recommended dosage regimens was high across all age groups. Reassuringly, amodiaquine and desethylamodiaquine exposure was not reduced in underweight-for-age young children or those with high parasitaemia, two of the most vulnerable target populations. A larger pharmacokinetic study with close monitoring of safety, including full blood counts and liver function tests, is needed to confirm the higher amodiaquine exposure in infants, understand any safety implications and assess whether dose optimization in this vulnerable, understudied population is needed.
Læs mere Tjek på PubMedAbdullahi Tunde Aborode, Kenneth Bitrus David, Olivier Uwishema, Agbendeh Lubem Nathaniel, Jegede Oluwatoyin Imisioluwa, Sherifdeen Bamidele Onigbinde and Fozia Farooq
American Journal of Tropical Medicine and Hygiene, 6.01.2021 Tilføjet 07.01.2021 05:15Abstract. Malaria remains a major global health burden, killing hundreds of thousands annually, especially in sub-Saharan Africa. In December 2019, a novel illness termed COVID-19, caused by SARS-CoV-2, was reported in China. This disease soon spread around the world and was declared a pandemic by the WHO on March 11, 2020. Considering that the malaria burden is high in many low-income tropical countries with little capacity to fund malaria control and eradication programs, the fight against malaria in these regions is likely to be hindered by COVID-19. Indeed, access to health care has generally been limited during the pandemic, whereas malaria interventions, such as seasonal malaria chemoprevention, and distribution of long-lasting insecticide-treated bed nets, have been suspended because of lockdowns. Likewise, the repurposing of antimalarials for the treatment of COVID-19 and a shift in focus from the production of malaria rapid diagnostic tests to COVID-19 rapid diagnostic tests are causes for concern in malaria-endemic regions. COVID-19 has disproportionately affected developed countries, threatening their capacity to aid in malaria control efforts. Here, we address impacts of the COVID-19 pandemic on the management and control of malaria in Africa.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 17:40
Abstract Background Globally, malaria is still a major public health challenge. Drug-based treatment is the primary intervention in malaria control and elimination. However, optimal use of mass or targeted treatments remains unclear. A variety of radical, preventive and presumptive treatment regimens have been administrated in China and a systematic review was conducted to evaluate effectiveness, and discuss experiences, limitations, and lessons learnt in relation to the use of these regimens. Methods The search for information includes both paper documents, such as books, malaria control annals and guidelines for malaria prevention and treatment, as well as three computer-based databases in Chinese (CNKI, WanFangdata and Xueshu.baidu) and two databases in English (PubMed and Google Scholar), to identify original articles and reports associated with drug administration for malaria in China. Results Starting from hyperendemicity to elimination of malaria in China, a large number of radical, preventive and presumptive treatment regimens had been tried. Those effective regimens were scaled up for malaria control and elimination programmes in China. Between 1949 and 1959, presumptive treatment with available anti-malarial drugs was given to people with enlarged spleens and those who had symptoms suggestive of malaria within the last 6 months. Between 1960 and 1999, mass drug administration (MDA) was given for preventive and radical treatment. Between 2000 and 2009, the approach was more targeted, and drugs were administed only to prevent malaria infection in those at high risk of exposure and those who needed radical treatment for suspected malaria. Presumptive therapy was only given to febrile patients. From 2010, the malaria programme changed into elimination phase, radical treatment changed to target individuals with confirmed either Plasmodium vivax or Plasmodium ovale within the last year. Preventive treatment was given to those who will travel to other endemic countries. Presumptive treatment was normally not given during this elimination phase. All cases of suspected were confirmed by either microscopy or rapid diagnosis tests for malaria antigens before drugs were administered. The engagement of the broader community ensured high coverage of these drug-based interventions, and the directly-observed therapy improved patient safety during drug administration. Conclusion A large number of radical, preventive and presumptive treatment regimens for malaria had been tried in China with reported success, but the impact of drug-based interventions has been difficult to quantify because they are just a part of an integrated malaria control strategy. The historical experiences of China suggest that intervention trials should be done by the local health facilities with community involvement, and a local decision is made according to their own trial results.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 17:40
Abstract Background Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. Methods In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. Results With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. Conclusions The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 17:40
Abstract Background Microscopy and rapid diagnostic tests (RDTs) are the main techniques used to diagnose malaria. While microscopy is considered the gold standard, RDTs have established popularity as they allow for rapid diagnosis with minimal technical skills. This study aimed to compare the diagnostic performance of two Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs (Paracheck Pf® Test (Paracheck) and Malaria Pf™ ICT (ICT)) to polymerase chain reaction (PCR) in a community survey. Methods A cross-sectional study was conducted between October 2012 and December 2014 in Mutasa District, Manicaland Province, eastern Zimbabwe. Households were randomly selected using satellite imagery, and 224 households were visited. Residents present in the household on the date of the visit were recruited for the study. Participants of all age groups from the selected households were screened with Paracheck and ICT RDTs in parallel. Dried blood spots (DBS) and thin and thick smears were collected. Parasite DNA extracted from the DBS was subjected to nested PCR targeting the Plasmodium cytochrome b mitochondrial gene. Data analysis was performed using the Cohen’s Kappa test to determine the interrater agreement and the sensitivity and specificity of the diagnostic test were reported. Results Results from a total of 702 participants were analysed. Most were females, 397 (57%), and the median age of participants was 21 years with an interquartile range of 9–39 years. Of those who were screened, 8 (1.1%), 35 (5.0%), and 21 (2.9%) were malaria parasite positive by microscopy, RDT and PCR, respectively. Paracheck and ICT RDTs had a 100% agreement. Comparing RDT and PCR results, 34 participants (4.8%) had discordant results. Most of the discordant cases were RDT positive but PCR negative (n = 24). Half of those RDT positive, but PCR negative individuals reported anti-malarials to use in the past month, which is significantly higher than reported anti-malarial drug use in the population (p
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 17:40
Abstract Background N,N-Diethyl-3-methylbenzamide (DEET) topical mosquito repellents are effective personal protection tools. However, DEET-based repellents tend to have low consumer acceptability because they are cosmetically unappealing. More attractive formulations are needed to encourage regular user compliance. This study evaluated the protective efficacy and protection duration of a new topical repellent ointment containing 15% DEET, MAÏA® compared to 20% DEET in ethanol using malaria and dengue mosquito vectors in Bagamoyo Tanzania. Methods Fully balanced 3 × 3 Latin square design studies were conducted in large semi-field chambers using laboratory strains of Anopheles gambiae sensu stricto, Anopheles arabiensis and Aedes aegypti. Human volunteers applied either MAÏA® ointment, 20% DEET or ethanol to their lower limbs 6 h before the start of tests. Approximately 100 mosquitoes per strain per replicate were released inside each chamber, with 25 mosquitoes released at regular intervals during the collection period to maintain adequate biting pressure throughout the test. Volunteers recaptured mosquitoes landing on their lower limbs for 6 h over a period of 6 to 12-h post-application of repellents. Data analysis was conducted using mixed-effects logistic regression. Results The protective efficacy of MAÏA® and 20% DEET was not statistically different for each of the mosquito strains: 95.9% vs. 97.4% against An. gambiae (OR = 1.53 [95% CI 0.93–2.51] p = 0.091); 96.8% vs 97.2% against An. arabiensis (OR = 1.08 [95% CI 0.66–1.77] p = 0.757); 93.1% vs 94.6% against Ae. aegypti (OR = 0.76 [95% CI 0.20–2.80] p = 0.675). Average complete protection time (CPT) in minutes of MAÏA® and that of DEET was similar for each of the mosquito strains: 571.6 min (95% CI 558.3–584.8) vs 575.0 min (95% CI 562.1–587.9) against An. gambiae; 585.6 min (95% CI 571.4–599.8) vs 580.9 min (95% CI 571.1–590.7) against An. arabiensis; 444.1 min (95% CI 401.8–486.5) vs 436.9 min (95% CI 405.2–468.5) against Ae. aegypti. Conclusions MAÏA® repellent ointment provides complete protection for 9 h against both An. gambiae and An. arabiensis, and 7 h against Ae. aegypti similar to 20% DEET (in ethanol). MAÏA® repellent ointment can be recommended as a tool for prevention against outdoor biting mosquitoes in tropical locations where the majority of the people spend an ample time outdoor before going to bed.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 17:40
Abstract Background Malaria and HIV are two important public health issues. However, evidence on HIV-Plasmodium vivax co-infection (HIV/PvCo) is scarce, with most of the available information related to Plasmodium falciparum on the African continent. It is unclear whether HIV can change the clinical course of vivax malaria and increase the risk of complications. In this study, a systematic review of HIV/PvCo studies was performed, and recent cases from the Brazilian Amazon were included. Methods Medical records from a tertiary care centre in the Western Brazilian Amazon (2009–2018) were reviewed to identify HIV/PvCo hospitalized patients. Demographic, clinical and laboratory characteristics and outcomes are reported. Also, a systematic review of published studies on HIV/PvCo was conducted. Metadata, number of HIV/PvCo cases, demographic, clinical, and outcome data were extracted. Results A total of 1,048 vivax malaria patients were hospitalized in the 10-year period; 21 (2.0%) were HIV/PvCo cases, of which 9 (42.9%) had AIDS-defining illnesses. This was the first malaria episode in 11 (52.4%) patients. Seven (33.3%) patients were unaware of their HIV status and were diagnosed on hospitalization. Severe malaria was diagnosed in 5 (23.8%) patients. One patient died. The systematic review search provided 17 articles (12 cross-sectional or longitudinal studies and 5 case report studies). A higher prevalence of studies involved cases in African and Asian countries (35.3 and 29.4%, respectively), and the prevalence of reported co-infections ranged from 0.1 to 60%. Conclusion Reports of HIV/PvCo are scarce in the literature, with only a few studies describing clinical and laboratory outcomes. Systematic screening for both co-infections is not routinely performed, and therefore the real prevalence of HIV/PvCo is unknown. This study showed a low prevalence of HIV/PvCo despite the high prevalence of malaria and HIV locally. Even though relatively small, this is the largest case series to describe HIV/PvCo.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 17:40
Abstract Background The invasion of the mosquito salivary glands by Plasmodium sporozoites is a critical step that defines the success of malaria transmission and a detailed understanding of the molecules responsible for salivary gland invasion could be leveraged towards control of vector-borne pathogens. Antibodies directed against the mosquito salivary gland protein SGS1 have been shown to reduce Plasmodium gallinaceum sporozoite invasion of Aedes aegypti salivary glands, but the specific role of this protein in sporozoite invasion and in other stages of the Plasmodium life cycle remains unknown. Methods RNA interference and CRISPR/Cas9 were used to evaluate the role of A. aegypti SGS1 in the P. gallinaceum life cycle. Results Knockdown and knockout of SGS1 disrupted sporozoite invasion of the salivary gland. Interestingly, mosquitoes lacking SGS1 also displayed fewer oocysts. Proteomic analyses confirmed the abolishment of SGS1 in the salivary gland of SGS1 knockout mosquitoes and revealed that the C-terminus of the protein is absent in the salivary gland of control mosquitoes. In silico analyses indicated that SGS1 contains two potential internal cleavage sites and thus might generate three proteins. Conclusion SGS1 facilitates, but is not essential for, invasion of A. aegypti salivary glands by P. gallinaceum and has a dual role as a facilitator of parasite development in the mosquito midgut. SGS1 could, therefore, be part of a strategy to decrease malaria transmission by the mosquito vector, for example in a transgenic mosquito that blocks its interaction with the parasite.
Læs mere Tjek på PubMedBen Bellekom, Talya D. Hackett, Owen T. Lewis
Trends in Parasitology, 5.01.2021 Tilføjet 06.01.2021 08:17Blood-sucking insects are important vectors of disease, with biting Diptera (flies) alone transmitting diseases that cause an estimated 700 000 human deaths a year. Insect vectors also bite nonhuman hosts, linking them into host-biting networks. While the major vectors of prominent diseases, such as malaria, yellow fever, dengue, and Zika, are intensively studied, there has been limited focus on the wider interactions of biting insects with nonhuman hosts. Drawing on network analysis and visualisation approaches from food-web ecology, we discuss the value of a network perspective for understanding host–insect–disease interactions, with a focus on Diptera vectors.
Læs mere Tjek på PubMedJenna Oberstaller, Thomas D. Otto, Julian C. Rayner, John H. Adams
Trends in Parasitology, 5.01.2021 Tilføjet 06.01.2021 08:17Genome-scale mutagenesis screens for genes essential for apicomplexan parasite survival have been completed in three species: Plasmodium falciparum, the major human malaria parasite, Plasmodium berghei, a model rodent malaria parasite, and the more distantly related Toxoplasma gondii, the causative agent of toxoplasmosis. These three species share 2606 single-copy orthologs, 1500 of which have essentiality data in all three screens. In this review, we explore the overlap between these datasets to define the core essential genes of the phylum Apicomplexa.
Læs mere Tjek på PubMedMalaria Journal, 6.01.2021 Tilføjet 06.01.2021 08:16
Abstract Background It is frequently said that funding is essential to ensure optimal results from a malaria intervention control. However, in recent years, the capacity of the government of Mozambique to sustain the operational cost of indoor residual spraying (IRS) is facing numerous challenges due to restrictions of the Official Development Assistance. The purpose of the study was to estimate the cost of IRS operationalization in two districts of Maputo Province (Matutuíne and Namaacha) in Mozambique. The evidence produced in this study intends to provide decision-makers with insight into where they need to pay close attention in future planning in order to operationalize IRS with the existent budget in the actual context of budget restrictions. Methods Cost information was collected retrospectively from the provider perspective, and both economic and financial costs were calculated. A “one-way” deterministic sensitivity analysis was performed. Results The average economic costs totaled US$117,351.34, with an average economic cost per household sprayed of US$16.35, and an average economic cost per person protected of US$4.09. The average financial cost totaled US$69,174.83, with an average financial cost per household sprayed and per person protected of US$9.84 and US$2.46, respectively. Vehicle, salary, and insecticide costs were the greatest contributors to overall cost in the economic and financial analysis, corresponding to 52%, 17%, and 13% in the economic analysis and 21%, 27%, and 22% in the financial analysis, respectively. The sensitivity analysis was adapted to a range of ± (above and under) 25% change. There was an approximate change of 14% in the average economic cost when vehicle costs were decreased by 25%. In the financial analysis, the average financial cost was lowered by 7% when salary costs were decreased by 25%. Conclusions Altogether, the current cost analysis provides an impetus for the consideration of targeted IRS operationalization within the available governmental budget, by using locally-available human resources as spray operators to decrease costs and having IRS rounds be correctly timed to coincide with the build-up of vector populations.
Læs mere Tjek på PubMedEmerging Infectious Diseases, 5.01.2021 Tilføjet 06.01.2021 07:57